资源类型

期刊论文 1265

会议视频 35

会议信息 6

年份

2024 3

2023 186

2022 201

2021 207

2020 120

2019 56

2018 41

2017 61

2016 40

2015 47

2014 48

2013 49

2012 30

2011 31

2010 44

2009 32

2008 23

2007 34

2006 3

2005 2

展开 ︾

关键词

SARS-CoV-2 7

COVID-19 5

微波散射计 5

碳中和 5

5G 4

Cu(In 4

HY-2 4

糖基化 4

2019 3

2020 3

2型糖尿病 3

GPS 3

Ga)Se2 3

HY-2 卫星 3

HY-2A卫星 3

代谢与免疫 3

光催化 3

农业科学 3

工程管理 3

展开 ︾

检索范围:

排序: 展示方式:

Adsorption characteristics of ciprofloxacin onto g-MoS2<

Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-019-1218-0

摘要: The g-MoS2 coated composites (g-MoS2-BC) were synthesized. The coated g-MoS2 greatly increased the adsorption ability of biochar. The synergistic effect was observed for CIP adsorption on g-MoS2-RC700. The adsorption mechanisms of CIP on g-MoS2-BC were proposed. The g-MoS2 coated biochar (g-MoS2-BC) composites were synthesized by coating original biochar with g-MoS2 nanosheets at 300°C(BC300)/700°C (BC700). The adsorption properties of the g-MoS2-BC composites for ciprofloxacin (CIP) were investigated with an aim to exploit its high efficiency toward soil amendment. The specific surface area and the pore structures of biochar coated g-MoS2 nanosheets were significantly increased. The g-MoS2-BC composites provided more π electrons, which was favorable in enhancing the π-π electron donor-acceptor (EDA) interactions between CIP and biochar. As a result, the g-MoS2-BC composites showed faster adsorption rate and greater adsorption capacity for CIP than the original biochar. The coated g-MoS2 nanosheets contributed more to CIP adsorption on the g-MoS2-BC composites due to their greater CIP adsorption capacity than the original biochar. Moreover, the synergistic effect was observed for CIP adsorption on g-MoS2-BC700, and suppression effect on g-MoS2-BC300. In addition, the adsorption of CIP onto g-MoS2-BC composites also exhibited strong dependence on the solution pH, since it can affect both the adsorbent surface charge and the speciation of contaminants. It was reasonably suggested that the mechanisms of CIP adsorption on g-MoS2-BC composites involved pore-filling effects, π-π EDA interaction, electrostatic interaction, and ion exchange interaction. These results are useful for the modification of biochar in exploiting the novel amendment for contaminated soils.

关键词: Adsorption     Ciprofloxacin     g-MoS2 nanosheets     Biochar     Soil remediation    

Mercury removal from aqueous solution using petal-like MoS2 nanosheets

Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1307-0

摘要: Abstract • Synthesized few-layered MoS2 nanosheets via surfactant-assisted hydrothermal method. • Synthesized MoS2 nanosheets show petal-like morphology. • Adsorbent showed 93% of mercury removal efficiency. • The adsorption of mercury is attributed to negative zeta potential (-21.8 mV). Recently, different nanomaterial-based adsorbents have received greater attention for the removal of environmental pollutants, specifically heavy metals from aqueous media. In this work, we synthesized few-layered MoS2 nanosheets via a surfactant-assisted hydrothermal method and utilized them as an efficient adsorbent for the removal of mercury from aqueous media. The synthesized MoS2 nanosheets showed petal-like morphology as confirmed by scanning electron microscope and high-resolution transmission electron microscopic analysis. The average thickness of the nanosheets is found to be about 57 nm. Possessing high stability and negative zeta potential makes this material suitable for efficient adsorption of mercury from aqueous media. The adsorption efficiency of the adsorbent was investigated as a function of pH, contact time and adsorbent dose. The kinetics of adsorption and reusability potential of the adsorbent were also performed. A pseudo-second-order kinetics for mercury adsorption was observed. As prepared MoS2 nanosheets showed 93% mercury removal efficiency, whereas regenerated adsorbent showed 91% and 79% removal efficiency in the respective 2nd and 3rd cycles. The adsorption capacity of the adsorbent was found to be 289 mg/g at room temperature.

关键词: Anionic surfactant     2D material     MoS2 nanosheets     Mercury removal     Adsorption capacity    

growth of a-few-layered MoS on CdS nanorod for high efficient photocatalytic H production

《能源前沿(英文)》 2021年 第15卷 第3期   页码 752-759 doi: 10.1007/s11708-021-0779-3

摘要: An ultrathin MoS2 was grown on CdS nanorod by a solid state method using sulfur powder as sulfur source for photocatalytic H2 production. The characterization result reveals that the ultrathin MoS2 nanosheets loaded on CdS has a good contact state. The photoelectrochemical result shows that MoS2 not only are beneficial for charge separation, but also works as active sites, thus enhancing photocatalytic activity. Compared with pure CdS, the photocatalytic activity of MoS2 loaded CdS was significantly improved. The hydrogen evolution rate on m(MoS2): m(CdS) = 1: 50 (m is mass) reaches 542 μmol/h, which is 6 times of that on pure CdS (92 μmol/h). This work provides a new design for photocatalysts with high photocatalytic activities and provides a deeper understanding of the effect of MoS2 on enhancing photocatalytic activity.

关键词: photocatalytic H2 production     CdS     MoS2 cocatalyst     charge separation    

Application of MoS in the space environment: a review

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0755-1

摘要: A considerable portion of space mechanism failures are related to space tribological problems. Cold welding in high vacuum; surface erosion and collision damage caused by various radiations, high temperature oxidation under atomic oxygen (AO) bombardment; and thermal stress caused by temperature alternation all alter the physical, chemical, and friction properties of materials. In particular, the space vibration caused by alternating temperatures and microgravity environments can alter the motion of the contact body, further affecting its friction properties. Improving the friction properties of contact surfaces in the space environment is an important way to extend the service life of spacecraft. Traditional lubricants can no longer meet the lubrication requirements of the space environment. This study describes the characteristics of the space environment and the applications of solid lubricants. The friction properties of MoS2, a solid lubricant widely used in space, are discussed. The synergistic lubrication of MoS2 with surface textures or metals is presented. Advances in research on the friction properties of collision sliding contacts in the space environment are reviewed. The combination of MoS2 and soft metals with surface textures is introduced to reduce the effects of vibration environments on the friction properties of moving parts in space mechanisms. Finally, the challenges and future research interests of MoS2 films in space tribology are presented.

关键词: MoS2     soft metal     space environment     surface texture     synergistic effect     vibration    

hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1566-z

摘要:

● An urchin-like OMS/ZIS composite was fabricated by a facile solvothermal method.

关键词: Dual-functional photocatalysts     Oxygen-doped MoS2/ZnIn2S4     H2 evolution     Organic pollutant    

用于环境催化的MoS2/ZIF-8复合材料——太阳能驱动的抗生素降解工程 Article

陈文倩, 李琳悦, 李林, 裘文慧, 唐量, 徐玲, 许科军, 吴明红

《工程(英文)》 2019年 第5卷 第4期   页码 755-767 doi: 10.1016/j.eng.2019.02.003

摘要: 然而,目前使用的TiO2基催化剂仅吸收紫外(UV)区域中的小部分太阳光谱,导致效率降低。在本文中,我们提供了一种MoS2/ZIF-8复合光催化剂,它可以使环丙沙星(CIP)和盐酸四环素(TC)的光催化降解率分别达到1T/2H-MoS2的1.21倍和MoS2/ZIF-8纳米复合材料的产氢率是MoS2的1.79倍。这项工作通过优化表面纳米异质结结构的构造,为探索原始和高效的1T/2H-MoS2/MOF基光催化剂提供了新的方向。我们发现复合光催化剂经久耐用,其催化性能在稳定性测试下得以保持。因此,1T/2H-MoS2/MOF基光催化剂具有良好的抗生素降解工程应用前景。

关键词: 1T/2H-MoS2     ZIF-8     抗生素降解     光催化    

A DNA sensor based on upconversion nanoparticles and two-dimensional dichalcogenide materials

Muskens, Antonios G. Kanaras

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 935-943 doi: 10.1007/s11705-020-2023-9

摘要: We demonstrate the fabrication of a new DNA sensor that is based on the optical interactions occurring between oligonucleotide-coated NaYF : Yb ; Er upconversion nanoparticles and the two-dimensional dichalcogenide materials, MoS and WS . Monodisperse upconversion nanoparticles were functionalized with single-stranded DNA endowing the nanoparticles with the ability to interact with the surface of the two-dimensional materials via van der Waals interactions leading to subsequent quenching of the upconversion fluorescence. By contrast, in the presence of a complementary oligonucleotide target and the formation of double-stranded DNA, the upconversion nanoparticles could not interact with MoS and WS , thus retaining their inherent fluorescence properties. Utilizing this sensor we were able to detect target oligonucleotides with high sensitivity and specificity whilst reaching a concentration detection limit as low as 5 fmol·L , within minutes.

关键词: upconversion nanoparticles     DNA sensor     two-dimensional materials     MoS2     WS2    

Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated with mesoporous MoS

《能源前沿(英文)》 2021年 第15卷 第3期   页码 772-780 doi: 10.1007/s11708-021-0783-7

摘要: MoS2 is a promising electrocatalyst for hydrogen evolution reaction and a good candidate for cocatalyst to enhance the photoelectrochemical (PEC) performance of Si-based photoelectrode in aqueous electrolytes. The main challenge lies in the optimization of the microstructure of MoS2, to improve its catalytic activity and to construct a mechanically and chemically stable cocatalyst/Si photocathode. In this paper, a highly-ordered mesoporous MoS2 was synthesized and decorated onto a TiO2 protected p-silicon substrate. An additional TiO2 necking was introduced to strengthen the bonding between the MoS2 particles and the TiO2 layer. This meso-MoS2/TiO2/p-Si hybrid photocathode exhibited significantly enhanced PEC performance, where an onset potential of +0.06 V (versus RHE) and a current density of −1.8 mA/cm2 at 0 V (versus RHE) with a Faradaic efficiency close to 100% was achieved in 0.5 mol/L H2SO4. Additionally, this meso-MoS2/TiO2/p-Si photocathode showed an excellent PEC ability and durability in alkaline media. This paper provides a promising strategy to enhance and protect the photocathode through high-performance surface cocatalysts.

关键词: photoelectrocatalysis     hydrogen evolution     Si photocathode     mesoporous MoS2    

Magnetic Co-doped 1D/2D structured -FeO/MoS effectively activated peroxymonosulfate for efficient abatement

《环境科学与工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11783-024-1797-2

摘要:

● Magnetic Co- γ -Fe2O3/MoS2 were prepared via facile hydrothermal methods.

关键词: Magnetic Co-γ-Fe2O3/MoS2     Hydrothermal method     Bisphenol A     Degradation pathways     Toxicity analysis    

A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution

Mingyu Pi, Xiaodeng Wang, Dingke Zhang, Shuxia Wang, Shijian Chen

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 425-432 doi: 10.1007/s11705-018-1726-7

摘要:

Self-standing porous WP2 nanosheet arrays on carbon fiber cloth (WP2 NSs/CC) were synthesized and used as a 3D flexible hydrogen evolution electrode. Because of its 3D porous nanoarray structure, the WP2 NSs/CC exhibits a remarkable catalytic activity and a high stability. By using the experimental measurements and first-principle calculations, the underlying reasons for the excellent catalytic activity were further explored. Our work makes the present WP2 NSs as a promising electrocatalyst for hydrogen evolution and provides a way to design and fabricate efficient hydrogen evolution electrodes through 3D porous nano-arrays architecture.

关键词: WP2     nanosheet arrays     hydrogen evolution electrocatalyst     flexible electrode    

Toughening of vinyl ester resins by two-dimensional MXene nanosheets

《化学科学与工程前沿(英文)》   页码 1651-1658 doi: 10.1007/s11705-022-2208-5

摘要: Two-dimensional nanosheets are highly effective tougheners for vinyl ester resins. The toughening effect is related to the high specific surface area and unique two-dimensional planar structure of the nanosheets. In this study, a coupling agent γ-(2,3-epoxypropoxy) propytrimethoxysilane (Kh-560) was used to modify MXene nanosheets (M-MXene) for use in toughening vinyl ester resin. The mechanical properties, including the tensile strength, flexural strength, Young’s modulus and elongation, of neat vinyl ester resin and vinyl ester resin modified with MXene and M-MXene were investigated. The results showed that modification significantly improved the mechanical properties of the vinyl ester resin. The tensile and flexural strengths of the MXene-nanosheet-modified vinyl ester resin were 27.20% and 25.32% higher, respectively, than those of the neat vinyl ester resin. The coupling agent improved the interfacial compatibility between the MXene nanosheets and vinyl ester resin, which resulted in the tensile and flexural strengths of the M-MXene-nanosheet-modified vinyl ester resin being 52.57% and 54.60% higher, respectively, than those of the neat vinyl ester resin for a loading quantity of nanosheets of only 0.04 wt %, which is economically viable. The main mechanisms by which the nanosheets toughen the resin are crack deflection and crack pinning.

关键词: MXene nanosheets     2D material     vinyl ester resin     modification     coupling agent    

Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 420-432 doi: 10.1007/s11705-021-2065-7

摘要: Production cost, capacitance, and electrode materials safety are the key factors to be concerned about for supercapacitors. In this work, a type of carbon nanosheets was produced through the carbonization of tripotassium citrate monohydrate and nitric acidification. Subsequently, a well-designed manganese dioxide/carbon nanosheets composite was synthesized through hydrothermal treating. The carbon nanosheets served as the substrate for growing the manganese dioxide, regulating its distribution, and preventing it from inhomogeneous dimensions and severe agglomeration. Many manganese dioxide nanosheets grew vertically on the numerous functional groups generated on the surface of the carbon nanosheets during acidification. The synergistic combination of carbon nanosheets and manganese dioxide tailors the electrochemical performance of the composite, which benefits from the excellent conductivity and stability of carbon nanosheets. The carbon nanosheets derived from tripotassium citrate monohydrate are conducive to the remarkable performance of manganese dioxide/carbon nanosheets electrode. Finally, an asymmetric supercapacitor with active carbon as the cathode and manganese dioxide/carbon nanosheets as the anode was assembled, achieving an outstanding energy density of 54.68 Wh·kg–1 and remarkable power density of 6399.2 W·kg–1 superior to conventional lead-acid batteries. After 10000 charge-discharge cycles, the device retained 75.3% of the initial capacitance, showing good cycle stability. Two assembled asymmetric supercapacitors in series charged for 3 min could power a yellow light emitting diode with an operating voltage of 2 V for 2 min. This study may provide valuable insights for applying carbon materials and manganese dioxide in the energy storage field.

关键词: carbon nanosheets     manganese dioxide     asymmetric supercapacitors     energy density     power density    

Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries

Glenn J. Sim, Kakui Ma, Zhixiang Huang, Shaozhuan Huang, Ye Wang, Huiying Yang

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 493-500 doi: 10.1007/s11705-019-1826-z

摘要: Three-dimensional Prussian blue (PB) nanostructures was obtained via a one-step hydrothermal method. Subsequently, two-dimensional tin disulfide (SnS ) nanosheets were grown onto PB through a facile hydrothermal synthesis. The as prepared SnS /PB is further employed as the anode of sodium ion batteries (SIBs). SnS /PB nanoarchitecture delivers a specific capacity of 725.7 mAh∙g at 50 mA∙g . When put through more than 200 cycles, it achieved a stable cycling capacity of 400 mAh∙g at 200 mA∙g . The stable Na storage properties of SnS /PB was attributed to the synergistic effect among the conductive PB carbon, used as the template in this work. These results obtained potentially paves the way for the development of excellent electrochemical performance with stable performance of SIBs.

关键词: Prussian blue     carbon nanocubes     tin disulfide     sodium ion batteries    

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1755-1764 doi: 10.1007/s11705-023-2318-8

摘要: Owing to the complexity of electron transfer pathways, the sluggish oxygen evolution reaction process is defined as the bottleneck for the practical application of Zn–air batteries. In this effort, metal nanoparticles (Co, Ni, Fe, etc.) encapsulated within nitrogen-doped carbon materials with abundant edge sites were synthesized by one-step pyrolysis treatment using cigarette butts as raw materials, which can drastically accelerate the overall rate of oxygen evolution reaction by facilitating the adsorption of oxygenated intermediates by the edge-induced topological defects. The prepared catalyst of nitrogen-doped carbon porous nanosheets loaded with Co nanoparticles (Co@NC-500) exhibits enhanced catalytic activity toward oxygen evolution reaction, with a low overpotential of 350 mV at the current density of 10 mA·cm–2. Furthermore, the Zn–air battery assembled with Co@NC-500 catalyst demonstrates a desirable performance affording an open-circuit potential of 1.336 V and power density of 33.6 mW·cm–2, indicating considerable practical application potential.

关键词: oxygen evolution reaction     porous carbon nanosheets     Co nanoparticles     edge-induced topological defects     Zn–air batteries    

NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1698-1706 doi: 10.1007/s11705-023-2334-8

摘要: The electrocatalyst NiFeRuOx/NF, comprised of NiFeRuOx nanosheets grown on Ni foam, was synthesized using a hydrothermal process followed by thermal annealing. NiFeRuOx/NF displays high electrocatalytic activity and stability for overall alkaline seawater splitting: 98 mV@ 10 mA∙cm−2 in hydrogen evolution reaction, 318 mV@ 50 mA∙cm−2 in oxygen evolution reaction, and a cell voltage of 1.53 V@ 10 mA∙cm−2, as well as 20 h of durability. A solar-driven system containing such a bifunctional NiFeRuOx/NF has an almost 100% Faradaic efficiency. The NiFeRuOx coating around Ni foam is an anti-corrosion layer and also a critical factor for enhancement of bifunctional performances.

关键词: NiFeRuOx nanosheets     Ni foam     electrocatalysis     overall seawater splitting     solar-driven system    

标题 作者 时间 类型 操作

Adsorption characteristics of ciprofloxacin onto g-MoS2<

Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu

期刊论文

Mercury removal from aqueous solution using petal-like MoS2 nanosheets

Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar

期刊论文

growth of a-few-layered MoS on CdS nanorod for high efficient photocatalytic H production

期刊论文

Application of MoS in the space environment: a review

期刊论文

hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS

期刊论文

用于环境催化的MoS2/ZIF-8复合材料——太阳能驱动的抗生素降解工程

陈文倩, 李琳悦, 李林, 裘文慧, 唐量, 徐玲, 许科军, 吴明红

期刊论文

A DNA sensor based on upconversion nanoparticles and two-dimensional dichalcogenide materials

Muskens, Antonios G. Kanaras

期刊论文

Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated with mesoporous MoS

期刊论文

Magnetic Co-doped 1D/2D structured -FeO/MoS effectively activated peroxymonosulfate for efficient abatement

期刊论文

A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution

Mingyu Pi, Xiaodeng Wang, Dingke Zhang, Shuxia Wang, Shijian Chen

期刊论文

Toughening of vinyl ester resins by two-dimensional MXene nanosheets

期刊论文

Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide

期刊论文

Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries

Glenn J. Sim, Kakui Ma, Zhixiang Huang, Shaozhuan Huang, Ye Wang, Huiying Yang

期刊论文

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects

期刊论文

NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient

期刊论文